Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Struct Biotechnol J ; 19: 1654-1660, 2021.
Article in English | MEDLINE | ID: covidwho-2261625

ABSTRACT

Susceptibility to severe illness from COVID-19 is anticipated to be associated with cigarette smoking as it aggravates the risk of cardiovascular and respiratory illness, including infections. This is particularly important with the advent of a new strain of coronaviruses, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) that has led to the present pandemic, coronavirus disease 2019 (COVID-19). Although, the effects of smoking on COVID-19 are less described and controversial, we presume a link between smoking and COVID-19. Smoking has been shown to enhance the expression of the angiotensin-converting enzyme-2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) key entry genes utilized by SARS-CoV-2 to infect cells and induce a 'cytokine storm', which further increases the severity of COVID-19 clinical course. Nevertheless, the impact of smoking on ACE-2 and TMPRSS2 receptors expression remains paradoxical. Thus, further research is necessary to unravel the association between smoking and COVID-19 and to pursue the development of potential novel therapies that are able to constrain the morbidity and mortality provoked by this infectious disease. Herein we present a brief overview of the current knowledge on the correlation between smoking and the expression of SARS-CoV-2 key entry genes, clinical manifestations, and disease progression.

2.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL